Pediatric Complex Chronic Conditions

Introduction

The adult comorbidities defined by authors such as Charlson, Quan and Elixhuaser are not suitable for pediatric research. Feudtner and others produced comorbidity definitions suitable for infants and children, with mappings defined for both ICD-9 and ICD-10 codes (Feinstein et al. 2018; Feudtner et al. 2014). These are now included in the icd package for R, which enables fast calculation of comorbidities for PCCC and other ICD code to comorbidity maps.

Calculating PCCC comorbidities

The PCCC comorbidities may be derived from both diagnostic and procedure codes. The following simulated data has both:

head(dat)
#>      id icd_dx1 icd_dx2 icd_pcs1 icd_pcs2
#> 1 10001   C8411   K0849  089PX0Z  035Y4ZZ
#> 2 10002 S20451A S52699M  03L00ZZ  0JRD0JZ
#> 3 10003    I600    Z990  0QCG3ZZ  06VC0CZ
#> 4 10004  T424X6 S42016K  05963ZX  0WH231Z
#> 5 10005   M2117  T477X3  0WPQ43Z  30260S1
#> 6 10006  S60559     H69  10903ZC      0BD

The data is in ‘wide’ format. icd no longer needs the data to be in ‘long’ format. The PCCC comorbidity classes can be computed directly from the source data and summarized in a plot. Here we calculate the PCCC from ICD diagnostic codes and ICD procedure codes separately, and logically combine them to get the result.

pccc_dx <- comorbid_pccc_dx(dat)
pccc_pcs <- icd10_comorbid_pccc_pcs(dat,
  icd_name = c("icd_pcs1", "icd_pcs2")
)
res <- pccc_dx | pccc_pcs
res[295:300, ]
#>       Neuromusc   CVD Respiratory Renal    GI HematoImmu Metabolic
#> 10295     FALSE FALSE       FALSE FALSE FALSE      FALSE     FALSE
#> 10296     FALSE FALSE       FALSE FALSE FALSE      FALSE     FALSE
#> 10297     FALSE FALSE       FALSE FALSE FALSE      FALSE     FALSE
#> 10298     FALSE FALSE       FALSE FALSE FALSE      FALSE     FALSE
#> 10299     FALSE FALSE       FALSE FALSE FALSE      FALSE     FALSE
#> 10300     FALSE FALSE       FALSE FALSE FALSE      FALSE     FALSE
#>       CongeniGenetic Malignancy Neonatal TechDep Transplant
#> 10295          FALSE      FALSE    FALSE   FALSE      FALSE
#> 10296          FALSE      FALSE    FALSE   FALSE      FALSE
#> 10297          FALSE      FALSE    FALSE   FALSE      FALSE
#> 10298          FALSE      FALSE    FALSE   FALSE      FALSE
#> 10299          FALSE      FALSE    FALSE   FALSE      FALSE
#> 10300          FALSE      FALSE    FALSE   FALSE      FALSE

Let’s look at the summary results:

colSums(res)
#>      Neuromusc            CVD    Respiratory          Renal             GI 
#>            270            344            108            163            269 
#>     HematoImmu      Metabolic CongeniGenetic     Malignancy       Neonatal 
#>            205            213            139            183            101 
#>        TechDep     Transplant 
#>            720            193

References

Feinstein, James A., Seth Russell, Peter E. DeWitt, Chris Feudtner, Dingwei Dai, and Tellen D. Bennett. 2018. “R Package for Pediatric Complex Chronic Condition Classification.” JAMA Pediatrics 172 (6): 596–98. https://jamanetwork.com/journals/jamapediatrics/article-abstract/2677901.

Feudtner, Chris, James A Feinstein, Wenjun Zhong, Matt Hall, and Dingwei Dai. 2014. “Pediatric Complex Chronic Conditions Classification System Version 2: Updated for ICD-10 and Complex Medical Technology Dependence and Transplantation.” BMC Pediatrics 14 (August): 199. https://doi.org/10.1186/1471-2431-14-199.